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We briefly review the recent microscopic derivation of the generalized dynamical
density functional equation with some modification as well as the time evolution
equation of the configuration distribution function. We then describe our
attempt to analyze the microscopic memory kernel operator that enters these
equations. In particular we give a matrix continued-fraction recursion formula
of the memory kernel operator.
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1. INTRODUCTION

The mode coupling theory to be abbreviated as MCT hereafter, which is
now a standard technique to incorporate cooperative motion of many par-
ticles in dynamical aspects of condesnsed systems, was originally conceived
in the 1960's in attempting to understand critical divergences of transport
coefficients(1–3) MCT for critical dynamics was then superceded by the
dynamical renormalization group theory(4) which combined the MCT idea
and Wilson's renormalization group idea, and the critical dynamics has
now become an exact science where forefront of research is ever higher
precision and minute details. Subsequently MCT played a useful role in
describing the so-called long time tail phenomena (for a recent review, see
ref. 5).

1 This article is dedicated to Leo P. Kadanoff, whose early paper with J. Swift is instrumental
to the popularity of the mode coupling theory today.

2 Department of Natural Science and Mathematics, Chubu University, Kasugai, Aichi 487-
8501, Japan.
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MCT was imbued with a new life in the 1970's when it was realized
that the MCT idea can be used to develop theories of liquid dynamics,
which had been one of the toughest problems in statistical physics. This
development was culminated in the papers by Sjogren(6) in 1980, where he
was able to reproduce theoretically the dynamical scattering structure fac-
tor of liquid rubidium with no adjustable parameters. The success of this
new application of MCT apparently provided a motivation to go a step
forward to apply it to supercooled liquid and glass transition. This new
development is influencing recent glass transition studies as can be seen in
the review articles compiled recently by Sidney Yip.(7)

At this stage, the author cannot emphasize too strongly the fundamen-
tal difference of the nature of the two problems to which the same MCT
formalism was applied, namely, the critical dynamics and the liquid and
glass dynamics. Once understood, the former is essentially a clearcut and
simpler problem in the sense that we can focus on asymptotic behavior
near a genuine singularity characterized by fluctuations of indefinitely
increasing length and time scales. Thus, microscopic details are only
secondary. The central issue was to discover universal features, for which
the renormalization group provided an ideal tool. The situation with
respect to the latter is totally different. The author has an impression that
the fact that MCT successfully dealt with critical singularity influenced its
application to glass transition where attention was focused on singular
behavior near the putative glass transition.'8' It turned out that in contrast
to critical dynamics there is no genuine singularity which is an artifact of
the mean field like approximation used. The only possible exception is the
case of colloidal glass where thermal noise effects are very small(9) which,
however, is enough to establish the value of the recent applications of
MCT.(8) In other cases the singularity is smeared out and should be regarded
more as a cross-over from one behavior to another. This may well be
related to the fact that here one is dealing with rather short length scales
of a few nanometers although time scales can be enormous. Thus in apply-
ing MCT and related continuum-type formalisms to supercooled liquid and
glass transition a new rationale is required. Here we argue that there is a
close parallel to the static density functional theory (DFT) of inhomogeneous
fiuids.(10). In this type of theories a homogeneous fluid in an equilibrium
(or metastable) state is taken as a reference system whose properties such
as the direct correlation function are assumed to be known. One then con-
structs a free energy density functional for fluid with an arbitrary inhomog-
eneous density profile which can be generated by a (real or ficticious) exter-
nal field. This free energy functonal is minimized with respect to the density
profile under whatever the constraints required such as the conservation
law or boundary conditions. In this way one can discuss transition of fluid
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to crystals or amorphous solids, or fluids near a wall or an interface. This
theory is couched in the continuum language and is still addressed to
short scale heterogeneities. A rationale for this approach is provided by
the variational principle. Thus, if this theory can be extended to dynamics,
we have also a rationale for treating short scale dynamics in a continuum
language. Indeed such attempts were made sometime ago. Munakata(11)

and Bagchi(12) formally extended the static density functional theory to
dynamics obtaining a closed equation governing time evolution of density
profile. We have considered a similar theory(13) with a motivation to refor-
mulate the standard self-consistent MCT applied to glass transition.(8) All
these theories may be termed dynamical density functional theories
(DDFT). The major problem facing such a dynamical extension is the
lack of clear-cut criterion for choosing a proper set of the gross variables
that give adequate description of short scale long time dynamics, and also
the need to delineate the conditions under which the existing DDFT
holds. These problems have never been made explicit until recently.(14)

Thus there is clearly a necessity to look at microscpic bases of the extising
DDFT.

The purpose of this contribution is first to briefly review the DDFT
(Section 2) and the recent microscopic derivations with some modification
of formally exact generalized configuration space equation and dynamical
density functional equation (DDFE), which still contain a complicated
memory kernel operator that involves the untractable projector (Section 3).
We then describe our attempts to analyze this memory kernel operator
(Section 4). Although all the results obtained are formal at this stage, we
think that this is still useful prior to introduction of approximation schemes
or computer analyses which are eventually necessary. In this sense this part
of the paper is a progress report of our efforts to attack this challenging
problem.

As was mentioned in the preceding section, we have proposed the
dynamical density functional equation (DDFE) as an alternative formula-
tion to the current MCT for supercooled liquids and glass transition.(13)

The equation takes the following form of the stochastic equation for the
probability density functional Dt{p}:(13)
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Here c(r) is the direct correlation function of the reference liquid which is
simply related to the static structure funtion(16) and p0 is the density of the
reference fluid.

The above DDFE was derived by adiabatically eliminating the velocity
field from the coupled equation of motion of the desnity and the velocity
field.(11–13) A closely related equation was obtained much earlier by elimi-
nating the velocity field to describe the slow time evolution of the concen-
tration field for critical binary fluid mixtures.(17) The adiabatic elimination
of the velocity field is well justified in the case of critical fluid since the con-
centration changes very slowly due to critical slowing-down compared to
the velocity field without critical slowing-down.(4) In comparison, no such
good justification exists for the case of normal fluid, and only a hand-wav-
ing argument was put forward to insist that in sufficiently dense fluids the
density should be the only slow variable(l8) with a supporting calculation
using the revised Enskog theory of hard sphere system.(19) The argument is
expected to be valid near freezing where translational motions of molcules
slow down enormously by the so-called cage effect. Otherwise, however, it
is hard to justify a calculation based on DDFT such as ref. 20.

We have used Eqs. (2.1) and (2.2) and the additional factorization
approximation to derive the long time form of the self-consistent idealized
MCT equation(8) for the density auto-correlator of supercooled liquids.(13)

On the other hand, (2.1) contains a thermal noise term and hence should
be able to describe thermally activated processes which should dominate
slow dynamics in deeply super-cooled or frozen states. We have in fact
shown that this is the case by first mapping DDFE onto a special kinetic
Ising model,(21) and then performing Monte-Carlo simulations of this
model.(22)

3 Iteration of the functional derivative at the same spatial point r here is defined as the limit
r' -»r of the functional derivatives at the two different points r and r'. This coincidence of
the two spatial points arose from the usual choice of the molecular expression for the density
which is the sum of the delta functions exactly specifying the locations of individual particles.
If we smear out the delta functions, such coincidence can be avoided. However, we have not
encountered any difficulty with this definition so far.

where L is a kinetic coefficient and H{p} is the free energy density func-
tional.3 The simple version of H is the Ramakrishnan-Yussouf type,(15)
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0 being the two-body potential. The Liouville operator L(x) then takes the
following form:

where VN denotes partial differentiation with respect to N-vector r^.
Earlier(23) we formally eliminated all the variables other than the den-

sity by projector(24) in a single step. To actually carry this out is a for-
midable task because this involves averaging over equilibrium distribution
function over configuration space of all the interacting particles. It is easier
first to eliminate the momentum variables whose equilibrium distribution is
Gaussian (the normalized Maxwell distribution &(fN)). This will be done
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3. MICROSCOPIC DERIVATIONS

We consider a classical system consisting of N particles of mass m with
coordinates xN = xx, r2,..., rN and momenta p ^ s p , , p2,..., pN where we
have adopted the convention of expressing N vectors associated with N
particles by a single vector in 3N-dimensional space by attaching a super-
fix N. A point in the phase space (rN, pN) is simply denoted by x. The
Liouville equation for the phase space distribution function D,(x) is written
as

Here and after we shall denote all the microscopic quantities by attaching
^ to the symbol except for ri, pi which carry particle labels. We shall often
suppress arguments x and simply write L, etc instead of L(x), etc, and also
abbreviate L', etc. for L(x'), etc. A standard form for the Hamiltonian H
is,

where 0 is the total potential energy, and in the case of two-body forces,
is written as



The last member of the above is due to oddness of L under time reversal.
We introduce the reduced distribution function for the configuration

space rN by
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in the following. The first thing to do is to introduce a projector P0 with
its complement Qo = 1 - PQ by ref. 24

A few useful formulae are:

We then assume that the initial phase space distribution function D0(x) is
a "smooth" one such that it is equal to the projected part:

where the distribution functions with the subscripts e always refer to the
equilibrium state. It is often more convenient to work with Laplace trans-
form XL(z) of an arbitrary function of time X(t) defined by

Thus a formal solution of the Liouville equation is:

Here we note the following useful operator identity:



Dynamical Density Functional Equation of Dense Fluids 533

With these preparations we find a closed equation obeyed by %, (3.7), or
its Laplace transform £b\ of the following form:

Here and after we often suppress arguments rN and/or pN unless confusion
arises. Then it is possible to transform FN

z(x
N) into the following form:(25)

Before reducing Az(r
N) into a more tractable form which will be taken up

in the next section, we note that (3.14) has the form of a generalized
Smoluchowski equation where Az(x

N) is a dN × dN matrix operator acting
on r^ instead of a constant number, d being the dimensionality of space.
We can then derive a dynamical density functional equation from (3.12) by
slightly extending the procedure described in ref. 23 applied to the
Smoluchowski equation (see Appendix B of that reference). Thus we first
introduce the probability density functional by

Here p{\) is the density and its molecular expression in terms of r^ is
denoted as p(t) and a functional dependence is expressed as {•••}. Typi-
cally p(r) is expressed as the sum of <$(r — ry) over all the particles, but her
we leave it more general. For instance we can choose the one in which the
delta function is replaced by a narrow Gaussian function. The delta func-
tional S{p — p'} was defined as before in ref. 23. In order to obtain a for-
mally closed equation for the Laplace transform of D t{p} denoted as
Dj{p} from (3.12) we assume a smooth initial condition for 2) as

We also need another projector Pp defined by its action on any function
X{rN) as
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where p means that it is evaluated at the configuration rN. Then
Pp%{r") = %(xN). Thus Eqs. (3.12), (3.16)-(3.18) imply

We can again use for Pp(z — r%) ' Pp the operator identity (3.11) with th
replacements Po-> Pp, £-> r*. As in the case of the Smoluchowski equa-
tion,(23) we neglect in the first approximation the contribution involving a
complementary projector Qp = 1 — Pp. This approximation becomes exact i
the case of p(r) equal to the sum of delta functions since Pp reduces to the
identity in this case as is explicitly demonstrated in Appendix. The result is

Following the procedure similar to that employed in ref. 23 we arrive for
an arbitrary X{p} at

The only difference from the previous case is that Az(x
N) is still a com-

plicated z-dependent matrix operator acting on rN, but the analyses can be
carried out almost in a manner parallel to ref. 23. Thus further reduction
of (3.22) is possible and we find

where Fz{p} is an operator acting on any functional X{p) defined through



If r^ is the only slow variable in dense fluids(18) we can take the limit
z - 0 + in (3.12), (3.14), and (3.15) and/or (3.26), (3.24) and (3.25) and
obtain Markoffian stochastic equations for time evolution of rN and/or p(r)
which can be taken as new starting points for computer analyses.

Note that if we simplify (3.24) and (3.25) by replacing Az(r
N) by a

constant and p{r) is chozen to be Z/<?(r —r,), we recover (2.1). This sim-
plification depends on this particular choice of p(r), and otherwise the form
of DDF equation is more complicated than (2.1).

The operator Az(r
N), (3.15), operating in the configuration space rN

plays a key role appearing in (3.14) and (3.25). Thus this section is devoted
to its analyses. This is not an easy task because it contains a projector Qo

whose handling creates problems. In Subsection 4.1 we relate Az(t
N) to

2z(r
N), (4.1) below, governed by the usual dynamics L and obtain a few

general relationships. In Subsection 4.2 we directly analyze Az(r
N) itself by

obtaining a kind of matrix continued fraction recursion relation.

We take up two similar configuration space operators, one is Az{rN),
(3.15), and another is denoted by A~z(r

N) and is defined as follows,
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where we indicated the dependences of p on the configuration rN and
Az(r

N) is given by (3.15). If the rapid momentum relaxation that enters
Az(r

N) involves only small numbers of particles which are close together,
Wz(tr'; {/>}{/}) is expected to be short-ranged in |r — r'|.

With these results the equation for D^{p} is written as

4. ANALYSES OF AJr")

4.1. General Relationships

We first discuss a few general properties of these operators and and then
establish the relation between them. For this purpose let us first define the
modified Liouville operators as



We then define adjoints Of and O(r N ) t of a phase space operator O and
a configuration space operator O(rN), respectively, through the following
relations where X, f and X(rN), Y(rN) are, respectively, arbitrary phase
space and configurationspacefunctions:
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so that we have

and

Sometimes operators O and/or 0{rN) can form 3N-dimensional matrices O
and/or O{rN) like A. In those cases, adjoint of an operator means taking
transpose of the matrix as well. We then immediately find taking into
account the commutativity of L and De,

the last one above following from the first two. One can then readily verify
the following properties:

We now use the identity,

to find
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and the explicit form (3.4) of L where pN is replaced by pN in the under-
lined quantities. We then find

and

Thus the final result is

This relationsip enables us to express the operator containing the unwieldly
projected dynamics in terms of that with the normal dynamics. Also we
obtain the following in a similar manner:

(4.15) follows directly from (4.14) as well by taking the adjoint of the latter,
changing the sign of z, and using (4.8) as well as the self-adjoint property
of the operator

The last-mentioned property readily follows by the alternative form of R as



The seeming danger of the z-» 0+ limit of the rhs of Eqs. (4.14), (4.15) is
only apparent since VN-AZ is seen to vanish in this limit (See the middle
equation of (4.11)), and (4.15) follows by taking the adjoint of (4.14). The
results (4.14) and (4.15), although formal, may serve as starting points for
introducing approximation methods such as the systematic expansion of(26)

leading to the revised Enskog equation for dense hard sphere systems. We
note that the equilibrium average </lr> of Az is closely related to the fre-
quency(z)-dependent self-diffusion constant.4 Vanishing of \N-AZ in the
z->0+ limit implies a care needed in approximating the rhs of (4.14). For
instance, factorization like

4.2. Reduction Formulae of Az(r
w)

4 The diagonal element [(Az)]lxlx of the matrix {Az} is the z-dependent self-diffusion con-
stant. The off-diagonal elements like [(A2}]lx2x vanish in the thermodynamic limit in the
rest frame of the entire system. All other elements like [(Az)]lxjy vanish if the spatial
isotropy is assumed.
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makes no sense. Az itself describes the diffusion process in the 3N-dimen-
sional configuration space.

We will now transform Az(r
N). For this purpose we introduce a set of

orthonormal polynomials ^ ( p ^ ) which can be chosen to be real. The
orthonormality condition reads

We also assume the completeness condition as follows:

Then an arbitrary function X(pN) can be expanded as
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The first two groups of members of the orthonormal set for the 3-dimen-
sion are:

with

The expansion in terms of this orthonormal set can be conveniently utilized
to handle projectors.5 Thus for example, we find

This permits us to write Q0LQ0 of (3.15) as

where Y.'p is the sum over u=0 and X{x) is an arbitrary phase function.
The second member of the above equation is also written as

Note that L^r") is still an operator acting on rN.
With these as matrix elements, we introduce the matrix operator L(rN)

defined in the space of u, v = 0 and denote the unit matrix in the same
space by 1. We can then write A2(r

N) given by (3.15) in matrix form as

5 A special case is the set of polynomials that appear in the Grad 13 moments. But we do not
want to make a specific choice at this time.



where [ ... ]11 is the dNxdN submatrix of [ ••• ] composed of matrix
elements [ ••• ] l a l 6 .

Here we show that the expression for Az{rN), (4.27), can be trans-
formed into a form that permits reduction. For this purpose we first regroup
the orthonormal set ^ ( p ^ ) into mutually orthogonal subsets ipJa{pN)
where 7 = 0, 1, 2,... designates subset and a a member in a subset. Thus the
orthonormality (4.16) now reads

We now apply the operator identity (3.11) where Po, L are replaced,
respectively, by PUP{-£P>. That is, using QXP> =P{'Ql = P? and
PxLPi=0 we find
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The particular cases j = 0, 1 correspond to \po(P
N)> lAia(p

A')» (4.20). A natural
choice of ipJa(p

N) which is made here is the Hermite polynomial-type
products of they p^'s. However, we note that this is not necessary if the
condition (4.46) below is met. We can then define a series of projectors Pj as

with Qj= 1 – Pj. The coefficients yfa(r
N) which are still functions of rN are

defined by (4.20) where u is replaced by ja. We have

We also introduce the following projectors for j > 1

We then rewrite



where 1|", L^ are, respectively, the identity submatrix and the submatrix
composed of LMV which have elements only in the subspace spanned by the
projector Pf*. We notice that Z1 is a submatrix in the space spanned by

where

L{~2 is the submatrix of the matrix formed by LMV, (4.25), with ft = la, v = jb
with y > 2 . Likewise, L ^ is the submatrix of the matrix formed by L^,
(4.25), with n = ja, v = \b with j > 2. Both of these are still operators acting
on rN. After some algebra we obtain the following for the operator in
(4.33):

Also ^2 is the vector formed by the components \j/Ja with j > 2 and P£* is
the operator (not a projector) defined by

where y1 is the vector formed by the components ^ l a in the subspace and
P, is the operator (not a projector) defined by

where the sums are over /i,v = j,a with j > 2 and we have also defined the
operator L^{x) which acts only in the subspace spanned by the projector
P£'. Next we can write

We note
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The required condition is
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*l/ia(PN). If we denote the identity submatrix in this subspace by 11, (4.32)
can be rewritten as

What we have shown amounts in view of (4.27) to

where on the lhs we have noted that 1 and L in (4.27) are the matrices in
the space spanned by P{~. If we can choose the orthonormal set in such a
way that LMV vanishes unless the subset numbers of u, v differ by 1, which
is the case for Hermite polynomial type functions, we can make the follow-
ing replacements:

where Ljl is the submatrix of L consisting of elements L ja, lb. Then (4.39)
can be replaced by

where [ . . . ] 22 is the dN x dN submatrix of [ • • • ] composed of matrix
elements [ . . . ] 2a2b This procedure can be formally continued in a
straightforward manner redefining various notations in an obvious way as

This condition would be lifted at the expense of some complexities. We can
also find the following recursion formula:

Thus we have obtained what might be called matrix continued fraction
expansion, which is reminiscent of the Mori continued fraction expan-
sion.(27) The latter is, in essence, a rearragement of short time moment
expansion whereas here no such frequency moments enter.

Recently the DDFT equation of the type (2.1) was successfully applied
to understand the results of molecular dynamics simulation of solvation



dynaqmics,(28) where the coefficient L in (2.1), which is denoted as Db in
ref. 28, was found to be considerably smaller than the self-diffusion con-
stant. Microscopic analysis presented in this section might shed some light
on this problem in future.

Another area where the DDFT or its generalization might be useful is
the transport in confined space where one has to deal with short scale
dynamics.(29) A deeper understanding of this problem will give us insights
into glassy dynamics where short scale spatial heterogeneities appear to
play an important role.(30)

In the preceding sections we have described our recent works on
dynamical density functional theory focusing on its miroscopic bases.
However, we have only touched on its formal aspects where we did not
even specify the actual microscopic form of /5(r). In order for the approach
to be useful, spatial coarse-graining is inevitable at some stage. Without
coarse-graining the density profile has the same information as the N par-
ticle configuration since labelling of particles are irrelevant. One suggestion
for coarse-graining comes from the normal mode analyses of liquids
recently put forward by T. Keyes and others(31) It seems natural that the
variables describing stable directions associated with real frequencies can
be projected out. On the other hand coarse-graining can bring in variables
other than the density. For instance the local stress tensor, which under-
goes enormous slowing-down near freezing, cannot be expressed in terms
of a coarse-grained density alone although expressible in terms of p(r) as
a sum of delta functions.6 Such slow variables are expected to play some
role near freezing and a way must be found to incorporate them.

One of the motivation for developing the DDFT is to go beyond the
exisitng perturbative or self-conststent MCT. Recently a novel approach
is put forward in ref. 33 where instead of truncating mode coupling at a
certain fixed order, say bilinear or trilinear, a new criterion is used to limit
mode coupling terms by the total decay rates of the products of modes.
This gives rise to a new possibility of using the MCT idea in attacking slow
dynamics in a much more efficient manner. However, so far it is limited to
to the cases of purely dissipative dynamics. A main problem in applying the
idea to our case is that our generalized DDFT equation or the configura-
tion space equation is not purely dissipative. But this method may open a
new way of looking at handling our generalized DDFT.

6 Such a variable is known under the name of composite operator and plays a role in quan-
tum field theory and critical phenomena.(32)
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Finally we mention the vigorous activity in the application of the time-
dependent density functional theory for many electron problems.(34)

However it is beyond the scope of this work to relate the present theory to
this activity.

where the configurational space dependency of p is indicated, which may
be suppressed for brevity. Let us now fix [p(r)] at all the lattice points r,
which is equivalent to fixing a point rN in the configuration space apart
from labelling of particles. Thus D,[p] is proportional to Dt(r

N) where the
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APPENDIX. CONFIGURATION SPACE AND DENSITY
PROFILE

Here we explicitly demonstrate the intuitively obvious fact that if the
microscopic expression of the density p{r) is chosen to be the sum of delta
functions given by

then, the information contained in the density profile is equivalent to the
information contained in giving a point in the N particle configuration
space rN = ti, r2,..., r^ apart from irrelevant particle labelling. We demon-
strate this for the case of lattice gas, and regard the continuous case by taking
a contnuum limit afterward. In this way we can avoid singularities associated
with delta functions. Thus we let p(r) be defined instead of (A.1) by

where A is the Kronecker delta and the size of a cell was chosen in such
a way that a cell can accommodate at most a single particle due to strong
repulsive interaction. Here r, ri and the density function p(r) are discrete
variables. Thus the delta functional d{p — p'} is replaced by the product of
Kronecker's delta:

The probability density functional now becomes



Hence we have shown that Pp amounts to mere identity.

This work was supported by the Scientific Research Fund of Ministry
of Education, Science and Culture of Japan and also by Research Institute
for Science and Technology of Chubu University.

Dynamical Density Functional Equation of Dense Fluids 545

latter is chosen to be invariant under relabelling of particles. In fact we
then find

This can be seen by considering normalization of the both sides of (A.5).
Namely, since there are N! ways of labelling N particles, we find

Thus, from the definition (A.4) with [ p ] , [ p ] , and rN replaced, respec-
tively, by [ p ] , [p ] , and rN we obtain

Next we consider the projector Pp introduced by (3.18) acting on Dt(r
N)

In general, for a symmetric configuration space function the use of (A.6)
yields,
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